A note on tame/compatible almost complex structures on four-dimensional Lie algebras
نویسندگان
چکیده
منابع مشابه
Almost Contact Metric Structures on 5-Dimensional Nilpotent Lie Algebras
We study almost contact metric structures on 5-dimensional nilpotent Lie algebras and investigate the class of left invariant almost contact metric structures on corresponding Lie groups. We determine certain classes that a five-dimensional nilpotent Lie group can not be equipped with.
متن کاملEinstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملComplex Structures on indecomposable 6-Dimensional Nilpotent Real Lie Algebras
We compute all complex structures on indecomposable 6-dimensional real Lie algebras and their equivalence classes. We also give for each of them a global holomorphic chart on the connected simply connected Lie group associated to the real Lie algebra and write down the multiplication in that chart.
متن کاملClassification of abelian complex structures on 6-dimensional Lie algebras
Let g be a Lie algebra, J an endomorphism of g such that J = −I , and let g be the ieigenspace of J in g := g ⊗R C. When g is a complex subalgebra we say that J is integrable, when g is abelian we say that J is abelian and when g is a complex ideal we say that J is bi-invariant. We note that a complex structure on a Lie algebra cannot be both abelian and biinvariant, unless the Lie bracket is t...
متن کاملComplex Product Structures on 6-dimensional Nilpotent Lie Algebras
We study complex product structures on nilpotent Lie algebras, establishing some of their main properties, and then we restrict ourselves to 6 dimensions, obtaining the classification of 6-dimensional nilpotent Lie algebras admitting such structures. We prove that any complex structure which forms part of a complex product structure on a 6-dimensional nilpotent Lie algebra must be nilpotent in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2015
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2015.08.020